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Abstract. In this paper we propose two new forms of Adaptive Programming.
The first approach, AP-P, is an imperative approach that adds a programming
construct called, interposition variables, that reduce boilerplate code in computa-
tions over recursive data structures. Our current implementation of AP-P is called
DemeterP and is provided as a standard Java annotation processor that generates
Aspect] code. The second approach, AP-F, is a functional approach that param-
eterizes a generic traversal with three sets of functions. These functions can be
combined to modify traversal behavior to produce various functional transforma-
tions and folds. Our current implementation of AP-F is called DemeterF and is
provided as a Java library that relies on reflection. We describe the ideas behind
the two approaches, discuss their implementations, and use them to solve some
typical programming language related problems.

1 Introduction

The corner stone of Object Oriented Programming (OOP) is the notion of object com-
munication via message passing. Collaborations between objects are the building blocks
used by programmers to provide desired program functionality. One of the most com-
mon collaboration patterns used is recursive traversal [1-3]— given an object, recur-
sively traverse its fields, performing necessary computation; recursion terminates when
an object without fields is reached. The visitor design pattern [4] gives an abstraction
that can be customized to implement operations over a data structure, but programmers
are still left with the following questions:

— how should the data structure be traversed,
— which objects are responsible for the traversal implementation, and
— where and how should information be made available during traversal.

Adaptive Programming (AP) emerged as an extension to OOP with the goal of
abstracting and separating traversal and computation from object structures. In AP,
traversal code is automatically generated from a description of the data structure and
a traversal strategy— a specification of where and how deep the traversal should go.
Computation is defined separately in a specialized visitor, with methods executed be-
fore and after reaching an object of a specific type. Values are communicated between
visitor methods by mutating visitor instance variables.



In this paper we introduce two refinements of AP: AP-P and AP-F. AP-P uses an-
notations to define interposition variables [5,6] within visitors. These variables are
only available during traversal and can be used to communicate information between
different executions of visitor methods. AP-F is a functional formulation of AP that
decomposes traversal computation into three sets of functions: transformers, builders,
and augmentors. AP-F employs a method dispatch mechanism during traversal, allow-
ing communication to occur through function arguments and return values. Both re-
finements enhance communication during traversal, maintaining traversal separation by
decreasing dependencies between traversal and computation.

As an illustrative example consider the class hierarchy in Figure 1 that describes
Items; an item is either a single Element with a weight, or a Container with a
maximum capacity and a list of items. Given an item, we want to check recursively
for container violations, i.e., container objects whose total weight is greater than their
capacity.

Element Container

+weight: int +capacity: int

items

first

ItemList

IltemCons

Fig. 1. Containers UML Class Diagram

Figure 2 gives a functional, object oriented solution to the container problem in Java. We
define a helper class, Pai r, to hold the number of violations and the total weight of the
current item(s). We introduce the method check () into each class, which responsible
for calculating the item’s weight and nested violations.

In the pure object oriented solution writing traversal code is tedious, but straight for-
ward: for each object type, recurse through its immediate fields until we reach an E1-
ement, which contains no aggregate fields!. The traversal also hard-codes the names
and layout within the object structures. As a result any modification of names or struc-
ture requires a number of disjoint changes to the implementation; these changes are to
“boilerplate code” that is uninteresting to develop and maintain.

Figure 3 shows an AP Visitor solution to the container problem in DJ [7]. The cre-
ation of a ClassGraph instance extracts a representation of the related classes using
reflection. The method traverse () traverses its first argument, using the second as
a strategy and its third as the visitor to be executed during traversal. In AP, as with the

!'We do not usually attempt to traverse base types such as Integer, though they may actually
have fields



// Pair of Ints, <weight, violations>

class Pair{ // In class Container

int w, v; Pair check () {

Pair (int ww, int vv){ ... } Pair p = items.check();

static Pair make (int ww, int vv) { return p.add(0, (p.w > capacity)?1:0);
return new Pair (ww,vv); }

}

Pair add(int ww, int vv) { // In class ItemList
return Pair.make (w+ww, v+vv); Pair check () {

} return Pair.make (0, 0);

} }

// In class Item

// In class ItemCons
abstract Pair check();

Pair check () {
Pair f = first.check(),
r = rest.check();
return f.add(r.w, r.v);

// In class Element
Pair check() {
return Pair.make (weight,0); }

Fig. 2. Java implementation of the Container problem.

class CheckAP extends Visitor({

Stack<Integer> weightStk = new Stack<Integer>();
int weight = 0, violations = 0;

void after(Element e){ weight += e.weight; }
void before(Container c) {
weightStk.push (weight) ;
weight = 0;
}
void after(Container c) {
if (weight > c.capacity) violations++;
weight += weightStk.pop();
}
static int check (Item i) {
CheckAP v = new CheckAP();
new ClassGraph (true, false) .traverse(i, "from Item to *",

V)i
return v.violations;

Fig. 3. AP Visitor Implementation of the Container problem.



visitor pattern, communication is provided by local mutation to visitor instance vari-
ables. We use a Stack to mimic the recursive calls of the Java solution, pushing and
popping the previous container’s running weight when traversing a nested container?.

AP-P was designed with this type of calculation in mind, encapsulating operations
and nested state within visitors. Figure 4 shows the container solution written in our
AP-P implementation, DemeterP. The Java annotation associates an Integer vari-
able, named weight, with each Container instance. Each weight is initialized
to 0 and available only during traversal, within the the scope of the visitor CheckP.
Using the name weight within the visitor methods accesses the current value of the
enclosing container’s weight. The special syntax ($ipvs.weight.val) references
the last visited container’s weight, i.e., the weight associated with the argument to after.
Upon traversal entry of a container, the corresponding interposition variable is initial-
ized and becomes active; after exiting each container, the enclosing container’s weight
is updated and the variable is discarded (similar to the push and pop operations in our
AP solution).

class CheckP extends InterpositionVisitor({
@Interposition(classes={Container.class}, initializer="0")
Integer weight;
int violations = 0;

void after(Element e){ weight += e.weight; }
void after(Container c) {
int currWeight = S$ipvs.weight.val;
violations += ((c.capacity < currWeight)?1:0);
weight += currWeight;
}
static int check (Item i) {
CheckP v = new CheckP();
new ClassGraph (true, false) .traverse(i, "from Item to *", v);
return v.violations;

Fig. 4. DemeterP Implementation of the Container problem

AP-F extends AP using a functional traversal in the style of our Java container
solution. Communication between functions is provided through arguments and return
values, with a method dispatch base on all argument types. Figure 5 shows the container
solution written in our AP-F implementation, called DemeterF. We write combine ()
methods corresponding to each of the check () methods in the Java solution— the
first argument to the methods is the object being traversed. The dispatch mechanism se-
lects the most specific applicable method based on the type signature. The method with
argument type Element executes when we reach an Element, while the method
with argument types ItemCons, Pair, and Pair executes when we reach an ob-
ject of type TtemCons, after processing its fields: first and rest. The traversal

2 The stack is needed because we are performing a non-tail-recursive computation. For example,
a single variable is sufficient to count the total number of elements in a given container



of these fields yields objects of type Pair, which are passed as the second and third
arguments. The separation of functions in this way allows for a more functional style
traversal, leading to straight forward traversal parallelization and simpler implementa-
tions of transformations.

class CheckF extends IDDb({
Pair combine(Element e){ return Pair.make (e.weight, 0); }
Pair combine(Container c, Integer cap, Pair p)
{ return p.add(0, (p.w > cap)?1:0); }
Pair combine(ItemList il){ return Pair.make (0, 0); }
Pair combine(ItemCons ic, Pair f, Pair r){ return f.add(r.w, r.v); }

static Pair check(Item 1)
{ return new Traversal (new CheckF ()) .traverse(i); }

Fig. 5. DemeterF Implementation of the Container problem

AP-P and AP-F allow for better abstractions for traversal related computations. AP-
P encapsulates visitor state and operations on this state, provides context sensitive ac-
cess to visitor state and boilerplate code for updating visitor state in the presence of
recursive object structures. AP-F provides a new decomposition of computation dur-
ing traversal into transformer, builder, and augmentor functions along with an extend
method dispatch mechanism. Communication and state passing occurs through argu-
ments and return values leading to functional style solutions.

Both approaches enhance aspects of communication found in AP and remove the
need for boilerplate code; computation along recursive traversals becomes succinct, eas-
ier to maintain, and reusable. To support our claims we introduce our running example
in the next section and follow our discussion with a more detailed explanation of AP-P
in section 3 and AP-F in section 4. We discuss related work in section 5 and conclude
in section 6.

2 Running Examples

For the remainder of the paper we introduce a small language and provide solutions for
evaluation, type checking and compilation. All three phases are first implemented using
AP-P and then AP-F explaining our approach to program design under both AP exten-
sions. We introduce a small language of integers and strings together with casts and
polymorphic addition. We define classes of our abstract syntax tree for this language
using a Demeter style Class Dictionary (CD) that mixes concrete syntax (terminals)
with abstract syntax (data type definitions).

Figure 6 shows our CD for the simple language and data structures. In this notation,
’:” defines an abstract class (a sum or union type), and *=" defines a concrete class (or
product type). Field names are given in <-> followed by their fype. Concrete syntax
is given as string literals in-place and each definition is terminated by a period (.’).



Exp: IntExp | StrExp | StrCast | PlusExp.

IntExp = <val> Integer.

StrExp <val> String.

StrCast = " (string)" <exp> Exp.

PlusExp = " (" <lhs> Exp <op> Plus <rhs> Exp ")".
Plus = "+".

Fig. 6. Mixed concrete and abstract syntax for Examples

From this description it is easy to see how we would generate both Java class defini-
tions and a general parser for the data types>. In this simple language, the expression
("5"+ (string) 4) would be represented by the following Java expression:

new PlusExp(new StrExp("5"), new Plus(),
new StrCast (new IntExp(4)));

2.1 Example: Evaluation

For our first example with this language we will produce evaluators based on a sim-
ple, intuitive semantics. We use the notation [n] and [s] to denote the representation
of the integer n and the string s respectively. Values in our language consist of ¢,
constants that represent integers, and c;, constants that represent strings. For our imple-
mentations both representations correspond to the Java classes Integer and String
respectively. The language has an overloaded operator +, which, given two string values
returns a string value representing their concatenation, and given two integer values re-
turns an integer value representing their sum. If given a string and an integer, + throws
an error. We denote concatenation of two string representations with - and integer
addition with +.

[s] = ¢s [n] = cn (string)es = ¢

¢ = [“n”] [n] +[m] = [k] [s]-Tt] = [r]

(string)c, — ¢4 (cn + em) — ¢k (cs +¢) = e

2.2 Example: Type Checking

Our second example involves type checking expressions based on the obvious typing
judgments described below. There is no type environment; the types of expressions are
based solely on the types of their sub-expressions. Here > e : £ means we assign the type
t to the expression e. St rs and Ints are of type St rType and Int Type respectively.
Any well typed expression can be cast to a string, assigning it the result type St rType,
while P1usExp is assigned the type of its sub-expressions.

3 We use DemeterJ[8] to generate Java classes and input for the javacc[9] parser generator



> [s] : StrType > [n] : IntType

>e:t >ep:t Deg:t

> (string)e: StrType >(e1 +e2):t

To represent types in our type checker implementations we introduce the following
Java classes with static fields. The fields represent singleton types; they will only be
used as tags during type checking.

class Type({
static Type Int = new IntType(),

Str = new StrType(),
Plus = new PlusType(),
Err = new ErrType();

}

class IntType extends Type{}

class StrType extends Type{}

class PlusType extends Type{}

class ErrType extends Type{}

2.3 Example: Compilation

As a final example, we will reuse our type checking solutions to create a compiler from
our example language to a simple assembly language for an abstract stack machine.
The semantics of our assembly language are described below. In this notation each
instruction transforms the stack; an instruction is a function of type (stack — stack).
The stack is a list of values separated by commas with the top of the stack to the left.
pushs and pushi instructions are straight forward, pushing values onto the stack.
casts replaces an integer value on the top of the stack with the corresponding string
value; a cast of a string value has no effect.

pushs s : stk — cs, stk
pushi n : stk — cp, stk
casts : ¢y, stk = cs, stk cs =["n"]
cs, Stk — cq, stk
add : ¢y, Cn, Stk = Cpgm, stk

concat : ¢,cg, Stk — csq, Stk

The two forms of P1us are given by the add and concat instructions, adding or
concatenating the top two values on the stack. Note that the arguments are placed on the
stack in order, left to right, so the top of the stack is actually the right most argument.
We introduce a functional list class, OpList, with an overloaded method append ()
that accepts an Opcode— the abstract base class of the above definitions— or another
OpList, returning the updated OpList. The usage is made obvious in the following
sections.



3 AP-P

AP-P is concerned with achieving structure-shy communication among different points
during traversal, limiting the amount of boilerplate code that needs to be written. In
a functional style traversal, as in Figure 2, different functions communicate through
argument passing and return values. Typically, only one return value is allowed and ar-
guments are passed only to immediate function calls. This form of communication is
not structure-shy because values are communicated through possibly unrelated/uninter-
esting portions of the data structure.

In an AP style traversal, a visit method accepts a single parameter, the current ob-
ject being traversed, and returns void. Communication between visit methods is done
through mutation of shared state— the fields of the visitor instance. The approach pro-
posed by AP-P for structuring communication is to have fields in the visitor, called
interposition variables [5, 6], which store information related to instances of specific
types being visited. While traversing, different visit methods can communicate through
the fields associated with a given instance.

In the case of non-tail recursive traversals, the state of each piece of traversal advice
needs to be kept during the execution of nested visit methods calls. The state can be kept
as a mapping from the host object to another object encapsulating the state of traversal
advice. In case of recursive data structures (e.g., a composite [4] as in Figure 1), the
depth of recursive calls is not known in advance A stack can also be used as we did in
3. Maintenance of the mapping structure results in undesirable boilerplate code.

3.1 Interposition Variables

An interposition variable is a context sensitive variable. Its context is defined by the state
of the traversal. As a part of its definition, an interposition variable gets a set of host
types. During traversal, we signal a context entry before visiting a host type’s children
nodes — its fields. We signal a context exit after visiting a host type’s children.

Statically, an interposition variable of type ¢; over a host type ¢j introduces a new
field in tp of type ¢;. At runtime, during traversal, for each context defined by each
instance of t;, we associate a new instance of ¢;. We refer to this runtime association
between interposition variables instances to host type instances as incarnation of an
interposition variable. When the visitor is visiting an instance of one of a host types,
the interposition variable still refers to the innermost enclosing incarnation. On the
other hand, the object which is being visited also has a corresponding instance of the
interposition variable. This instance can also be referred to using a special Java enum
whose constants denote all interposition variables defined in the current visitor. Before
the visitor hits the first instance of any host class, there are no enclosing incarnations.
Therefore, the interposition variable refers to an empty incarnation, the root incarna-
tion. This root incarnation holds the result of the entire computation.

Our implementation of interposition variables, DemeterP, saves the developers the
mental burden of identifying those control flow points where the interposition variable
context changes. It also saves the developer the effort of writing the boilerplate code
required to adapt interposition variables to their context.



3.2 Polymorphic Interposition Variables

The traditional interposition variables described above are monomorphic; regardless of
the type of the host class they are attached to, all instantiations have the same type. A
monomorphic interposition variable is suitable for implementing type unifying traver-
sals [10]. A polymorphic interposition variable can have different types based on the
type of the host class it is attached to. Therefore, polymorphic interposition variables
are suitable for implementing type preserving traversals [10], i.e., deep cloning an ob-
ject structure.

Using Java’s subtype mechanism, polymorphic interposition variables can be de-
clared to be of type Object. The interposition variable’s initialization expression is
executed in an environment where the variable host is bound to the current object
about to be traversed. Initialization expressions can check for the type of the host using
host.getClass () and initialize the interposition variable to an appropriate type.
Pieces of traversal advice need to down cast the polymorphic interposition variable to
the appropriate type before using it.

3.3 Syntax of Interposition Variables

An interposition annotation consists of three optional parts: an array of classes, an ini-
tializer, and a flag to control the initialization of the root incarnation. Figure 7 shows the
abstract syntax of interposition variables. An empty array of classes means all classes
in the traversal. A t rue initialization flag means that the initializer is also used for the
root incarnation. This initializes the visitor field.

Each part has a default value. The default value of the class list is an empty array.
The default value of the flag is true. Figure 8 shows the Java annotation type. An initial-
izer which uses the type of the predefined variable host results in a truly polymorphic
interposition variable. On the other hand, an initializer which does not use the type of
the predefined variable host results in a monomorphic interposition variable.

VisitorField: NormalVariable | InterpositionVariable.
NormalVariable = <type> Type <name> Ident [<initializer> JavaExpr].
InterpositionVariable = [IPClasses] [IPInitializer] [IPInitVisitor]

IPClasses : ProperClassList | EmptyClassList.

ProperClassList = List (ClassName).
EmptyClassList = .
IPInitializer JavaExpr.

IPInitVisitor = Boolean.

ClassName = Ident.
List (x) ~ {x}.

Fig. 7. Abstract Syntax for Interposition Variables



@Documented
@Retention(value=RetentionPolicy.SOURCE)
@Target (value=ElementType.FIELD)
@interface Interposition {
Class<?>[] classes () default {};
String initializer() default "";
boolean initVisitorVar () default true;

Fig. 8. Interposition Annotation

3.4 DemeterP Implementation

DemeterP [11] is implemented as a standard Java annotation processor [12]. Our anno-
tation processor generates aspects in the Aspect] [13] Language. The generated Aspect
is responsible for:

Identifying the points at which the context of an interposition variable changes.
Introducing interposition variables at their host types.

Initializing the root incarnation of the interposition variable.

Adapting interposition variables to their context.

In AP, visitors have two types of visit methods before and after. A before method
is executed at a host object before any of its children are visited. An after method is
executed at a host object after all of its children are visited.

In our implementation, we trap the execution of these methods using pointcuts gen-
erated from the templates shown in Figure 9. Interposition variables with incarnations
at every visited object have a slightly different template, Figure 9.

Pointcuts alone are not enough; the processed visitor contains only a before (. .
host) without a corresponding after (.. host) or the reverse case of an after
without a corresponding before. In these cases, our generator introduces appropriate
methods. That is why we need to have the <AspectType> inside the within ()
clause in our pointcuts, capturing execution of our generated visitor methods.

Interposition variables are introduced at their host types using Aspect]’s private
introduction. This makes the introduced fields inaccessible outside the aspect [13]. Root
incarnations of interposition variables are initialized by advising visitor constructor(s).

For every visitor being processed, our processor generates a Java enum whose con-
stants denote the interposition variables defined in the visitor. This enum is used to
access the incarnations of interposition variables at the current object being traversed,
in case that object is an instance of one of the host types.

Interposition variables are adapted to their context using three pieces of advice. The
first is executed before entering to a host class. It sets the appropriate enum constant
enum to a new incarnation of the interposition variable using the appropriate initializer
if one exists. The second is executed after a before method terminates. It stores the
interposition variable (in the visitor) at the host object and sets the interposition variable
to the new incarnation from the enum. The third piece of advice is executed before an
after method begins and restores incarnations to their original state — the state before
executing our second advice.

10



ContextChangePointcut :=
pointcut <method><HostTypeName><VisitorTypeName>
(<VisitorType> v, <HostType> c): target (v)&& args(c) &&
execution(public void before (<HostType>)) &&
within (<VisitorType>| |<AspectType>) ;

EverywhereContextChangePointcut :=
pointcut <method>Object<VisitorTypeName> (<VisitorType> v, Object c):
target (v) && args(c) &&
execution(public void before(..))&s&
within(<VisitorType>| |<AspectType>);

Enumeration := enum <VisitorTypeName>$IPVS({
<InterpositionVariables (VisitorType) >;
public Object val;
}
where:
— method is either "before” or “after”.
— HostType/VisitorType is the fully qualified class name of the host/visitor.
— HostTypeName/VisitorTypeName is the HostType/VisitorType with
every . replaced with ”_".
— AspectType is the name of the aspect.
— InterpositionVariables(VisitorType) is a function that takes a
VisitorType and returns a comma separated list of all interposition
variables defined in the give VisitorType.

Fig. 9. Code Generation Templates

3.5 Example Solutions

Figure 10 shows an interpreter for the example language written in DemeterP. An inter-
position variable is associated with every class that represents an operation, i.e., St r—
Cast and P1lusExp. The interposition variable holds the results of evaluating the sub-
term(s) of the expression. After traversing a St rCast we add the newly cast value
to the innermost incarnation of vals. We do the same for P1usExp, dispatching on
the type of the first result, relying on dynamic casts for error checking. After traversal
completes the root incarnation contains the evaluation result of the entire expression.

Figure 11 shows a type checker for the example language written in DemeterP.
The structure of the type checker resembles that of the interpreter, but our interposition
variable stores the fypes of any sub-expressions. These types are used to choose the
correct result for compound expressions; being careful to propagate any type errors up
through the interposition variables.

Figure 12 shows a compiler for the example language written in DemeterP. The
compiler is implemented as an extension to the type checker. This way, the translation
can use the types to choose the appropriate Opcode for P1usExp. The type checking
code is reused and compilation is performed in a single traversal. The static com-
pile () function runs the traversal, checks for a valid return type, and produces the
resulting OpList. Not that within the CompilerVisitor we use a single OpList,
not an interposition variable, to store the Opcodes. This is because the order of op-
erations matches the defined traversal order in DemeterP; each Opcode can safely be

11



class EvalVisitor extends Visitor{
@Interposition(classes={StrCast.class,PlusExp.class},
initializer="new Vector<Object>()")
Vector<Object> vals;

void after(Integer i){ vals.add(i); }
void after(String s){ vals.add(s); }
void after(StrCast e){
Object val = $ipvs.vals.val.elementAt (0);
vals.add (""+val);
}
void after(PlusExp e) {
Object vall = $ipvs.vals.val.elementAt (0);
Object val2 = $ipvs.vals.val.elementAt (1);
vals.add((vall instanceof Integer)?
(Integer)vall+ (Integer)val2:
(String)vall+ (String)val2);

Fig. 10. Example Language Evaluation in DemeterP

class TypeCheckerVisitor extends Visitor({
@Interposition(classes={StrCast.class,PlusExp.class},
initializer="new Vector<Type>()")
Vector<Type> types;

void after(IntExp e){ types.add(Type.Int); }
void after(StrExp e){ types.add(StrType.Str); }
void after(StrCast e){
Type opT Sipvs.types.val.elementAt (0);
types.add((opT == Type.Err)?Type.Err:Type.Str);

}
void after(PlusExp e){ types.add(plusType(e)); }
Type plusType (PlusExp e) {
Type oplT = $ipvs.types.val.elementAt (0);
Type op2T = $ipvs.types.val.elementAt (1);
return (oplT == op2T && oplT != Type.Err)?oplT:Type.Err;
}
Type getType () { return types.elementAt (0); }

Fig. 11. Example Language Type Checker in DemeterP
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added to the end of the list, in order. We also use an append () method to localize list
mutation, since its implementation is immutable.

class CompileVisitor extends TypeCheckerVisitor {
OpList trans = new OpList();
void append (Opcode op) { trans = trans.append(op); }

void after(StrExp s) {
super.after(s);
append (new PushS(s.val));

}

void after(IntExp i) {
super.after(i);
append (new PushI(i.val));

}

void after (PlusExp e) {
super.after(e);
Type plusType = plusType (e);
append ( (plusType==Type.Int)? new Add(): new Concat());

}

void after(StrCast e){
super.after(e);
append (new CastS());

}

static OplList compile(Exp e){
CompileVisitor comp = new CompileVisitor();
new ClassGraph (true, false) .traverse(e, "from Exp to *", comp);
if (comp.getType() == Type.Err)
throw new TypeException(comp.getType());
return comp.trans;

Fig. 12. Example Language Compiler in DemeterP

4 Functional AP

AP-F was conceived to merge ideas prevalent in functional programming with those
already found in AP. Recursive traversals in functional languages are written in an ele-
gant way, but usually repeat common structure. Because many programming solutions
involve traversals, and rewriting these becomes tedious, we can factor out the generic
traversal code, leaving only the interesting parts of the program.

This has long been done through the use of general AP— separating visitors from
traversals— but the complete separation of traversals makes mutation the only form
of communication and computation. Mutation works fine when we want to compute
a few values from a given data structure, because side-effects are restricted to a visi-
tor’s instance variables. For problems which require updates to the data structure being
traversed (e.g., rewrites and transformations), we are forced to mutate what could be
globally shared state.

This may seem reasonable in a single threaded environment (though changes seen
through references may cause problems), but when attempting to parallelize our solu-

13



tions, as is now often the case, we are required to add locks and synchronization which
are difficult (if not impossible) to get right for non-trivial programs. With these ideas in
mind, we designed AP-F to allow communication throughout the traversal using argu-
ments and return values, rather than mutation®.

4.1 AP-F Traversals

An AP-F program is roughly defined by three sets of functions, which we call trans-
formers, builders, and augmentors. These sets of functions adapt the behavior of a pre-
defined recursive traversal with the help of a multiple dispatch function, which chooses
the best function from a given set’. The traversal function, T¥.3,a, and related abstrac-
tions are described in Figure 13. The traversal is divided into two cases: BuiltIn types
(e.g., int, boolean), and user defined types; represented abstractly as a sequence of
fields. The traversal accepts an extra argument, d,, in the figure, which is updated during
traversal.

Tt8,a(D, do) = if D= (do,...,ds) then
let d, < §(a, (D, da))
di < Tfp.0(diy dy) — traverse fields
D« 8, (D, dy,...,d,, d)) - combine Results
in §(f, (D, da)) apply f
else 4(f, (D, d.))

traversal argument update

f, B, and « are sets of functions.
d(G, (a1,...,an)) applies g € G to a prefix of the arguments, (a1, ...,am), choosing
the best function based on the types of the actual arguments and the types of

functions in G. (multiple dispatch)

Fig. 13. AP-F Traversal Function Definition

The traversal adapter function sets represent three aspects of hand-coded traversals
that one might write. To make the traversal adaptation sufficiently general, we define
the three sets of functions as:

f : General transformations; run at each node of the data structure

B : Reconstruction or folds using transformed data from sub-traversals

a : Modification or replacement of traversal arguments.
* In most plausible implementation languages, Java in particular, mutation is still available so
the user can mix the implementation language’s features.

> The notion of best function is based on static attributes of functions: the number of argument
accepted and formal parameter types.
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When traversing a data type, we first choose an augmentor, in ¢, to update the traversal
argument before traversing the fields of the object; this allows information to be passed
down during traversal. We then traverse each field of the object, passing the new argu-
ment. Once all fields have been traversed, we dispatch to a builder, in 8, which combines
these values; then dispatch to a transformer, in f, allowing a final modification to the
value before returning to the caller.

The way we have formulated the traversal function minimizes data dependencies
between individual values making it simple to parallelize. Each calculation of d} can be
done in separate threads, implicitly synchronizing on the dispatch to 8. Separating the
traversal adaptation into three sets of functions also increases opportunities for reuse;
allowing an AP-F implementation to provide suitable defaults for common development
scenarios. Figure 14 describes the default functions we have found useful in practice.
The idy and id,, functions are straightforward, but the builders idg and 3. are somewhat
special. We chose the behavior of idg to be error to help with debugging programs,
before our static type checker was completed. The constructing builder, 3., attempts
to call the constructor of type C, the type of D, passing the traversal results as new
fields. We can then use [, to do functional updates to a data structure by implementing
a transformer.

ids(d, do) = d

idg(d, ...) = error

Be(D, do, - ,dy, da) = new C(do, -+ ,dp)
ida(d, do) = da

Fig. 14. AP-F Default Function Definitions

The container checking solution in Figure 5 is defined as a function object, which
extends idg; covering all cases so there is never a call to the default, error. To create a
traversal using the CheckF function object we implicitly use the default function, i¢d,
and ignore any traversal argumentsé, as shown in the static check () method.

4.2 TImplementation: DemeterF

Our implementation of AP-F concepts is called DemeterF[14]. It is a generic traversal
and function library written in pure Java that uses reflection for both data structure
traversal and argument matching dispatch. The library provides the traversal function (a
simple Java translation of T’ g, from Figure 13), the dispatch function, 0, and various
combinations of the default functions defined in Figure 14 (described in Figure 15).
Weuse function objects to represent sets of functions, which allows users to
override and overload methods to completely adapt the generic traversal. To differenti-
ate the three types of functions within objects we use a different method name for each.

® Traversal arguments are optional in DemeterF.
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The various sets of functions f, 3, and « are implemented by writing apply (), com-
bine (), and update () methods respectively. This allows us to assemble function
objects that implement a number of methods of any kind.

Traversal Generic reflective traversal function over all data types
IDf Java implementation of ¢dy
IDb Java implementation of idg
Bc Java implementation of 3.
IDa Java implementation of ¢d
ID Java implementation of (ids U idg U id,,)
IDfa Javaimplementation of (idy U ido)
IDba Java implementation of (¢dg U idy)

Fig. 15. DemeterF Provided Classes and Function Objects

Figure 15 describes the provided class names and the implementation of the traver-
sal related functions. Most of the default implementations are as simple as:

class IDfa{
Object apply(Object D, Object da){ return D; }
Object update(Object D, Object da){ return da; }
}
Programmers can then use Java inheritance to overload/override methods, implement-
ing desired functionality over the traversal. Figure 16 describes a few of the provided
Traversal constructors and default function choices for each case. This shows the
ability to combine function sets into a single function object, eliminating some details
and providing extra flexibility when creating traversal solutions.

Traversal (IDf f) = Traversal (f, Bc, IDa)
Traversal (IDfa fa) = Traversal (fa, Bc, fa)
Traversal (IDb b) Traversal (IDf, b, IDa)
Traversal (ID fba) = Traversal (fba, fba, fba)

Fig. 16. DemeterF Default Traversal Constructions

4.3 Dispatch: Function Selection

The last portion of AP-F to explain is our dispatch function, §, which selects the best
(most specific) function from a set, based on the types of actual arguments during traver-
sal.
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5(G, (a1:Ci...an:Ch)) =
let G+ {g(S1...9m)€EG|m<n AVi<m.C; <S5}
g « head( sort(G’, lessthan))
m <« arity(g)

in g(ai...am)

lessthan(g(S1...5n), h(Ui...Up)) =
(n>m) or (n =m and moreSpecific((S1...Sn), (U1...Un), n))

moreSpecific((S1...S), (U1...Uyn), n) =
(n=0) or (S1 <U1) or
(S1 = Uy and moreSpecific((S2...Sn), (Uz...Uyn), n—1))

Fig.17. AP-F Dispatch Function Definition

Figure 17 describes our algorithm for function dispatch where < is the traditional tran-
sitive, antisymmetric subtype relation and < is its reflexive extension. To select a func-
tion we first filter the set, leaving only those applicable to sub-sequences of the given
argument types. We can then sort the functions in G' based on the defined comparison
function lessthan; applying the least function, g, to the first m arguments provided.

The filter and implementations of lessthan and moreSpecific are chosen to allow the
last few arguments to be optional. Placing functions with more arguments at the front of
the list is a consequence of allowing optional arguments: we consider more arguments
to be more information. This also allows functions with a larger number of more general
arguments to be selected ahead of those with fewer but more specific arguments. Avoid-
ing the algorithmic complexity of comparing function types with different numbers of
arguments.

The function moreSpecific compares equal length sequences of argument types,
stopping at the first inequality. This ensures that arguments at the front of the signa-
ture are given priority in function selection. It also compliments the inclusion of the
original data element being traversed as the first argument— the most important ar-
gument for structuring adaptive code is also the most important in function dispatch.
These functions (6, lessthan, and moreSpecific) are implemented for DemeterF using
Java reflection and type lists built from function objects that are used when creating a
traversal. We simply compare the reflective types of traversal results with the sets of
functions defined at the correct point in the traversal function.

4.4 Type Checking Traversals

Another benefit of this functional traversal organization is the ability to type check
traversals. Here a type error is defined as the case when the filter step of the dispatch
algorithm returns the empty set. Because of the way our default functions have been de-
fined this can only occur when dispatching to user provided builders. Not surprisingly,
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this kind of error can be caught with static information about the data structures to be
traversed and the functions to be dispatched.

>D:u u€Builtlns  A(f, (u)) >

> 7yp(u) U

bD:u  wiu|o-c|un > Trg(us) s I Vis; <

> 7sa(u): u”

>D:u  u={h)ur- (I un Tra(us):si AB, (uw,s1...8:)) = v A(f, (W) = u"

> 7s5(u):u

Fig. 18. AP-F Traversal Typing Rules

Ignoring augmentors for simplicity, Figure 18 shows our three typing rules for AP-
F traversals. We reuse a modified form of the DemeterJ Class Dictionary (CD) syntax
to differentiate between type definitions. Sum (or union) types are represented with *:’,
using ’|” to separate variants. Product (or record) types are represented with =" using
*(-)” for field definitions followed by their type. The judgment > 77 g(u) : § means
traversing an value of type u returns an value of type s, while the type dispatch function,
A, follows the selection algorithm described earlier, but produces the return type of the
chosen function instead.

Though slightly informal’, this description has been used to produce a static type
checker for DemeterF, written in DemeterF. The only difficult portions of the algorithm
are the recursion from two of the rules and the unification of subtypes in the third
rule. Using this type checker we can rule out the possibility of traversal errors without
needing an instance of a data structure.

4.5 Example Solutions

The solutions to the example problems in DemeterF use the argument matching to im-
plement cases from our language descriptions. For most of these problems we chose to
extend IDb because reconstruction (3.) of the data structure is not needed. For each of
the problems we will discuss any issues and design decisions involved.

Figure 19 shows our evaluation function for the example language. Each combine
method is a translation of a rule from the example language semantics with the excep-
tion of combine (Plus), which is implemented for completeness. Because rightmost
arguments are optional in DemeterF, the first two combines (IntExp and St rExp)
could instead take only one argument, looking inside e for the result. Because we use
the default transformer, idy, the return types of our combine methods are the result

7 Complete formalization and proof of type safety are items of future work.
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class Eval extends IDDb{
Integer combine(IntExp e, Integer i){ return i; }
String combine(StrExp e, String s){ return s; }
String combine(StrCast ¢, String s){ return s; }
String combine(StrCast c, Integer i){ return ""+i; }
Integer combine(PlusExp p, Integer 1, Plus op, Integer r){ return l+r; }
String combine(PlusExp p, String 1, Plus op, String r){ return l+r; }
Plus combine(Plus op){ return op; }

Fig. 19. Example Language Evaluation in DemeterF

types of the traversal function. The arguments of each method correspond to the orig-
inal object and the results of traversing any of its fields. For P1usExp there are two
valid cases; we treat each of them, relying on the IDb default (error) for any runtime
type errors.

class TypeCheck extends IDb{
Type combine(IntExp 1i){ return Type.Int; }
Type combine(StrExp s){ return Type.Str; }
Type combine(Plus p){ return Type.Plus; }

Type combine(PlusExp p, IntType 1, Type op, IntType r){ return Type.Int; }
Type combine(PlusExp p, StrType 1, Type op, StrType r){ return Type.Str; }
Type combine(PlusExp p){ return Type.Err; }

Type combine(StrCast c){ return Type.Str; }
Type combine(StrCast c, ErrType t){ return t; }

Fig. 20. Example Language Type Checker in DemeterF

Figure 20 shows our DemeterF type checker for the example language. Here in
the first two combine methods we ignore the second argument (presumably Inte-
ger and String respectively) because it is not needed in the typing judgment. The
first two cases for P1usExp are similar to evaluation, but we add a less specific case,
combine (PlusExp), to catch any invalid cases. Similarly for St rCast, we add a
more specific method to catch type errors in sub-terms, leaving the more general case
toreturn Type.Str.

Our compiler for the example language, in Figures 21 and 22, is slightly more
complicated because we need to select different Opcodes for addition and concate-
nation. To demonstrate one of the strengths of AP-F we do this using a simple rewrite
pass, which transforms P 1us operators. We introduce two new variants, P1usInt and
PlusStr, to represent addition and concatenation. The function object, TypeTrans,
which extends IDfa, updates the traversal argument to be the Type of the outer P1u—
sExp®. When reaching a P1us operator, the traversal will eventually dispatch to one

8 Calling the type check traversal each time is inefficient; we are currently working on ways of
composing traversals to eliminate this type of situation.
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of our apply () methods— assuming the original expression type checks. Once ap—
ply () has been called, the parents are then reconstructed by the builder B¢ (implicit
in the traversal construction), producing an expression where P1us is replaced by the
type correct variant.

class TypeTrans extends IDfaf{
// Pass the Type as a Traversal Argument
Type update(PlusExp p, Object o)
{ return new Traversal (new TypeCheck()) .traverse(p); }

Plus apply(Plus pl, IntType i){ return new PlusInt(); }
Plus apply(Plus pl, StrType i){ return new PlusStr(); }
}

class PlusInt extends Plus{

}
class PlusStr extends Plus{}

Fig. 21. Typed Translation of Plus using DemeterF

Once polymorphic P1us is removed from the expression, our compilation step be-
comes simpler. The Compi ler function object extends IDb, following a similar for-
mat to our evaluator. IntExps and St rExps produce push instructions— as with our
type checker, these combine methods ignore the results of traversing their fields. When
traversing our new plus operators we produce Add and Concat instructions; ata St r—
Cast we expect an OpList from traversing the sub-expression, appendinga CastS
instruction to the list.

class Compiler extends IDDb{
OpList single(Opcode o) { return new OpList ().append(o); }

OpList combine(IntExp 1i){ return single (new PushI(i.val)); }
OpList combine(StrExp s){ return single(new PushS(s.val)); }
Opcode combine(PlusInt pl){ return new Add(); }

Opcode combine(PlusStr pl){ return new Concat(); }

OpList combine(PlusExp p, OpList 1, Opcode op, OpList r)
{ return 1l.append(r) .append(op); }

OpList combine(StrCast c, OpList 1) { return l.append(new CastS()); }

static OplList compile (Exp e) {

Type t = new Traversal (new TypeCheck()) .traverse(e);
if(t == Type.Err)
throw new TypeException(t);
Exp newe = (new Traversal (new TypeTrans()).traverse(e, Type.Err));
return (new Traversal (new Compiler()).traverse (newe));

Fig. 22. Example Language Compiler in DemeterF
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The combine method for P1usExp is more complicated: we expect an OpList
from each of the sub-expressions, and an Opcode from the operator, PlusInt or
PlusStr. The result OpList is simply a concatenation of these lists in the right
order. The static compi le () method calls the type checker traversal. If the expression
type checks, then we can safely transform plus operators. The return value is the result
of traversing is a list of Opcode, translated using an instance of our Compiler function
object.

5 Related Work

The three Demeter tools provide different implementations for AP related ideas. Deme-
ter] [8] is a source manipulation tool and implements Demeter visitors using the vis-
itor design pattern and static traversal code generation. DJ [7] uses Java reflection to
traverse objects, removing the need for accept () method definitions withing host
classes. DAJ [15] uses Aspect Oriented Techniques [16, 17] to introduce the necessary
traversal methods. In each of the tools, traversal control is defined using strategies, al-
lowing certain changes [18] to a data structure without affecting the program’s meaning.
In all three tools communication during traversal is encoded in the tradition manner—
via visitor fields. Our AP-P solution is an addition to these tools that removes the need
for boilerplate code in some recursive computations. DemeterP uses DJ for implement-
ing its dynamic traversals, as well as Aspect] for its implementation of interposition
variables. AP-F is a more drastic extension in that it changes the way computation is
decomposed along a traversal. The new decomposition allows communication through
arguments and return values leading to purely functional computations. Functional style
traversals are easier to parallelize and compose [19], though we haven’t fully explored
both those areas’. Our DemeterF implementation has been seamlessly deployed along
side these tools without any extra modifications.

Environmental Acquisition [20,21] is somewhat related to the contexts of AP-P’s
interposition variables. With environmental acquisition, information is acquired through
the containment structure using explicit declarations. Interposition variables are implic-
itly available throughout the traversal within a given context and can be used to provide
reverse links within composite structures.

Ovlinger and Wand [3] propose a domain specific language as a means to specify re-
cursive traversals for use with the visitor pattern [4]. The language supports the addition
of traversal arguments, calling of arbitrary functions during traversal, and functional
style combination of intermediate results. The language provides traversal flexibility at
a higher level than hand-coded traversals, but is not robust with respect to data struc-
ture changes. AP-P and AP-F are immune to some forms of structural changes, simply
because traversal and computation are separate; the traversal can be adapted to changes
in the data structure separately, leaving computations unchanged. The flexibility of the
traversal language is such that it could be used to specify the traversals for the various
incarnations of AP, including AP-P and AP-F.

® We have developed a working, parallel version of DemeterF, but are still working on traversal
compositions
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In [22] a functional visitor implementation of DJ [7] is presented that introduces
around () visitor methods with the ability to control traversal. A second method ar-
gument of type Subtraversal captures the current traversal context, which can be
ignored or continued. A generic combine () method accepts an Ob ject array and
is used to provide default behavior for around. The values returned from visitors
and sub-traversals are unchecked and typically become Ob ject, decreasing static type
checking and safety, ultimately forcing runtime checks and many programmer inserted
casts. Though the ideas are similar to AP-F, our traversal organization and dispatch
functions relieve the programmer of casting and provide static guaranties of traversal
result types.

Strategic Programming (SP) has its roots in term rewriting [23,24], but has been
used in other paradigms including Object Orientated Programming [25]. In SP, traversal
computations are synthesized by passing a function to an appropriate traversal schema.
Programmer definable schemas are compositions of traversal primitives which are ap-
plied to a nodes immediate children (or fields). The OOP incarnation of SP is imple-
mented through a generalized visitor pattern, in which object structures implement a
predefined Java interface. Visitor methods always return an object of the visitable inter-
face; traversal primitives and compositions are achieved through parametrized construc-
tors. Although SP is more flexible with regards to traversal specification (e.g., top-down
or bottom-up [26]) the type limitations force programmers into heavy use of casting.
The use of generics could remove the need for casting although it is not clear if it could
be removed completely. AP-F does not impose any extra type restrictions, while the
extended method dispatch mechanism can be used to implement limited form of the
traversal primitives found in SP.

The goal of Scrap Your Boilerplate (SYB) [27-29] is to automatically traverses data
structures, using developer provided functions that perform transformations. Generic
traversal functions take a combinator and specify what nodes in the data structure a
function should be applied to. The traversal combinator’s argument is itself a function
that transforms data types of interested, acting like id for others. SYB provides transfor-
mations that can be type-unifying (TU), were each recursive traversal returns the same
type, or type-preserving (TP), where each returns the same type as its input type. AP-F
abstracts these ideas a bit more, separating traversal, transformation, and construction
so intermediate functions can return any type. TU and TP transformations then become
special cases. In addition, AP-F does not restrict the use of mutation, while mutation in
SYB must to encapsulated inside monads, though this has more to do with the imple-
mentation languages, rather than the concepts.

6 Conclusion

We presented two refinements to AP: AP-P and AP-F. AP-P introduces interposition
variables; visitor variables that are only available during traversal and can be used to
communicate information between different executions of visitor methods within the
same traversal context. Interposition variable come with implicit updates that mimic the
recursive traversal’s structure, alleviating programmers from writing boilerplate code.
AP-F is a functional formulation of AP that decomposes traversal computation into
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three sets of functions. An extended method dispatch mechanism during traversal al-
lows communication to occur through function arguments and return values leading to
purely functional computations. The traversal decomposition allows programmers to
easily build transformations that, due to their functional nature, lend themselves to easy
parallelism.
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